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PREFACE 

This research was supported by the Arnold Engineering Devel- 
opment Center of the Air Force Systems Command under Contract 
F40600-79-C-0002 with United Research Corporation and by the Air 
Force Office of Scientific Research under Grants AFOSR-74-2577A, 
B with Case Western Reserve University in Cleveland, Ohio. Dr. 
Keith Kushman was the Technical Monitor of the contract with 
AEDC. Mrs. Ernestine Badman was the Contracting Officer. 

The authors thank Dr. Keith Kushman for his review of this 
report. 

This is one in a series of AEDC Technical Reports prepared by 
United Research Corporation, Santa Monica, California, which 
document the solutions of the Orr-Sommerfeld equation and how 
these oscillations are initiated in a boundary layer. The 
report~ in this series are as follows: 

AEDC-TR-83-4 
Exponentially Varying~ Standing Waves 

in Parallel-Flow Boundary Layers 

AEDC-TR-83-7 
Waves Which Travel Upstream in Boundary Layers 

AEDC-TR-83-8 
Spatially-Decaying Arrays of Rectangular Vortices 

Interacting with Falkner-Skan Boundary Layers 

AEDC-TR-83-9 
The Boundary-Value Problem 

for Two-Dimensional Fluctuations in Boundary Layers 

AEDC-TR-83-3 
Rotational and Irrotational Freestream Disturbances 

Interacting Inviscidly with a Semi-Infinite Plate (This report) 

AEDC-TR-83-10 
Nonperiodic Fluctuations Induced by Surface Waviness 

Near the Leading Edge of a Model 

The last report presents the spectrum of standing waves 
excited by surface wavlness. This spectrum, with appropriate 
nondimensionalizations~ also applies to the case of freestream 
disturbances encountering a semi-infinite plate. 
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I. INTRODUCTION 

This report is part of a search for all possible classes of linear 
disturbances that can arise in a flowfield and thus serve as 
descriptive elements for a general disturbance flowfield. In the past, 
considerable attention has been given to limited classes of 
disturbances, for example the Tollmien-Schlichting waves which are 
traveling wave eigenmodes having vorticity transverse to the flow 
direction. But these waves do not represent all the possibilities. 

In flows over immersed bodies or in channels, the oncoming flow 
usually contains small amplitude fluctuations of velocity and pressure 
that we identify as freestream turbulence. These can have significant 
influence on the boundary layer development particularly with respect 
to the transition from laminar to turbulent flow. It is therefore 
important to determine the structural possibilities for such flows so 
that the significant features among them can be identified and included 
in more complete analytical investigations of factors relating to 
transition. 

Many flow disturbances are most easily identified in the uniform 
inviscid flow external to the boundary layers developing on the solid 
boundaries. If the boundary layers are thin enough, then they are 
benign with respect to the external flow and the impermeability of the 
solid boundary is the appropriate boundary condition for the external 
flow. These are the premises of the present paper and they will be 
pursued with the realization that there can be alterations to these 
disturbances in a viscous flow. There may of course be additional 
disturbances in a viscous flow that do not have inviscid counterparts 
and would therefore not be found by the present procedure. 

This report in particular will examine the velocity and pressure 
fields of disturbances that exist in a full two-dimensional 
incompressible flowfield about a semi-infinite flat plate. All of 
these disturbances have their three-dimensional counterparts but the 
two dimensional aspects have yet to be elaborated. 

It will be shown that the permissible classes include rotational 
as well as irrotational disturbances. Because of the llnearity of the 
treatment, superpositions of these are also included. An example of a 
rotational disturbance field as treated herein has been developed in 
Refs. 1 and 2. In general, the disturbances presently considered do 
not vanish far from the plate and in several instances are unbounded at 
infinite distances from the plate. These are retained since they are 
relevant to applications involving finite domains, for example in wind 
tunnels. 

This report therefore will (i) demonstrate how the solutions of 
Refs. 1 and 2 for ~q~k3/~vortlces convecting downstream and beside a 
semi-infinite plate can be adapted to other forms of freestream 
disturbances which also might propagate at speeds different from the 
freestream speed, (2) present results for several rotational and 
irrotational, two-dimensional, incompressible disturbances, and 
(3) demonstrate similarities and differences in the pressure 
fluctuations for the different disturbance fields. 



AEDC-TR-83-3 

2. GENERATION OF SOLUTIONS 

2.1 SOLUTION FOR AN ARRAY OF SQUARE VORTICES INTERACTING WITH A 
SEMI-INFINITE PLATE 

By conformal mapping, the streamfunction was derived for a 
low-intensity, high-Reynolds number array of two-dimensional 
vortices convecting downstream in a uniform mean flow and along a 
semi-infinite flat plate (Refs. 1 and 2). For regions neither "very 
near" the leading edge and plate, nor "very-far" downstream where 
nonlinear and viscous effects become significant, as discussed in 
Ref. 2, the disturbance streamfunction is 

¢-" ( ,:, ~,, : ; e, ) : ~ :<":'x- e, ,:s, + y, j _ ~ < ' ~, :, ~ ) (2.1a) 

where ~ : '~ ) = --/5<",'z(,,zy+~)s:,,z:,z(x-:) 77 (2.1b) 

is the streamfunction for an array of square vortices which convects 
with the mean flow. The superscript (a) emphasizes that this is the 
disturbance when the plate is absent, i.e., it is the "freestream" 
disturbance. These disturbances are a non-decaying form of a 
spatially-decaying array of vortices analyzed in Ref. 3. 

The second streamfunction in Eqn.(2.1a) is 

+ :o~ q ( - - ~ ) -  ~ : ~  %(-~) + ~:,~z:~] 

where 

- 5enzz:~i'f.-co.szz~ %(-~)_ s:nzz~qf-~'~) 

safe) / ~ ~ - : , / z  
C z - (Zgf/z I COSSi/Z ({) o/t 

0 

(2 .Ic) 

(2.1d)  

are the sine and cosine Fresnel integrals, and z=x+iy. 

f ro:~Cc~ )l:a~f [~P~eeiabm~~[~7~~nW~; when sub tr acted 
the plate. ~('Uis 

irrotational with streamlines as plotted in Fig. I. ~[ ] denotes the 
real part of [ ]- Ya is the phase angle which controls the 
y-orientation of the array relative to the x-axis or plate, x and y 
have been nondimensionalized against the half-wavelength or "diameter", 
.4, of a vortex. The time has been nondimensionalized against A/Um 
which represents the time for a fluid particle to convect a distance of 
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I 
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I 
I 
I 

t=I/2, y, =~/2,4~=i/i0 

x 

Figure i. Streamlines for the impermeability flow Y~i This 
irrotational flow represents the adjustment to the 
freestream disturbance caused by the semi-intinzte plate. 
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diet the freestream speed, U~, and the streamfunctions have been 
nondimensionalized against qA where q is the maximum normal speed of 
the freestream disturbance. 

While ~('~s a traveling, oscillating function along the plate for 
x>0 (see Fig. I), it is not generally periodic in x or y. Upstream of 
the plate, this flow does not oscillate. Hence, it cannot be thought 
of as a function with a single wavelength and speed. The abrupt change 
in boundary conditions at x=0+ has introduced a leading edge effect 
that can be viewed as a standing wave pattern that decays with distance 
from the leading edge superposed on the traveling wave for x>0. 

For later use, the disturbance velocities associated with this 
impermeability flowfield are 

(?)=-- ~(')=--e U 5L~I/ ~-(~,{) (longitudinal velocity) (2.2) 

V(/)-- ~x (e')- 51~ ~-(ff~ ~) (normal velocity) (2.3) 

where F = 5//?27(£x-Z ~) [ Sz(-77~ )- Cz{-7/Z) ] 
s t~ zr~+ co 5 ~t(2.4a) 

The quantity siny I is the ratio of the normal velocity along the x-axis 
to the maximum normal velocity in the freestream vortex. 

Computational experience has shown that the direct calculation of 
(2.4a) for Izlgreater than about 1.8 is not satisfactory when using 32 
bit arithmetic. When using 64 bit arithmetic, lz | was limited to about 
5.2. However, solution (2.4a) can be rearranged as 

! 
] (24b) 

where asymptotic series for large ~zl are presented in Ref. 6 for the 
functions, f and g, which are related to the Fresnel integrals as 
defined in the Nomenclature. Using this relation, the normal velocity 
has been calculated forlzl=400 , or 200 x-wavelengths from the leading 
edge. The normal velocity and its sine transform are plotted in 
Ref. 7. There are differences in the characteristic velocity in the 
nondimensionalizations of the present work and Ref. 7. 

The expressions for ~(aand # (e> are applicable for arrays of 
square vortices and considerable information has been assembled 
concerning the interaction of such arrays with plates and boundary 
layers. However, other forms of freestream disturbances exist, such as 
arrays of rectangular vortices, oblique plane waves of vorticity, 
irrotational disturbances, and many others. Extensions to solution 
(2.1a,b,c) are now considered which greatly broaden the class of 
permissible disturbances. 
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2.2 SOLUTION FOR OTHER ROTATIONAL AND IRROTATIONAL 
INTERACTING WITH A SEMI-INFINITE PLATE 

DISTURBANCES 

In Refs. 1 and 2, the impermeability condition is satisfied by 
superimposing a second flowfield with normal velocity along the plate 
(y = 0, x > 0 but not ~ of the / ~ ~ )  which is equal to 
the normal velocity of the freestream disturbance evaluated along the 
x-axis. The difference between these two velocities then vanishes 
along the plate, v~LvO)=0, for y = 0 and x ~ 0 and thus impermeability 
is satisfied downstream of the leading edge. 

This procedure can also be applied to freestream disturbances 
other than arrays of square vortices, including irrotational 
disturbances. In fact, the impermeability solution (2.1c) can be 
applied either directly or with minor modification to all freestream 
disturbances with normal component of velocity varying sinusoidally 
along the x-axis as 

Iv (='] =  y=o = cos (x- ) (2 .5)  

For some d i s t u rbances ,  Yl i s  a dummy parameter which w i l l  be se t  equal  
to  ~T/2 and the normal v e l o c i t y  f l u c t u a t i o n  thus has magnitude 1 along 
the x -ax i s  fa r -ups t ream of  the p l a t e .  Cond i t i on  (2.5) and the 
streamfunction (2.10) are sufficient to consider how other freestream 
disturbances interact with a semi-infinite plate. Examples of 
rotational disturbances are presented in Section 3, while examples of 
irrotational disturbances are given in Section 4. The case of a row of 
potential vortices is presented in Section 5. 
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3. ROTATIONAL DISTURBANCES 

3.1 ARRAYS OF COUNTER-ROTATING RECTANGULAR VORTICES 

The streamfunction for an array of rectangular vortices convecting 
with the mean flow is 

_t 
( 3 . l )  

where # is the y-wavenumber. If~ =~ then" the vortices are square. 
All lengths have been nondimensionalized with respect to the x-length 
of the vortex. The characteristic disturbance speed, q, is the maximum 
y-component. The derivative, ~ ~(°~@x --v ("), satisfies Eqn.(2.5). Hence 
the streamfunction for an array of rectangular vortices convecting past 
a semi-infinite plate is 

where ~(')is given by Eqn.(2.1c). The streamlines for # :3T/2 and 
~=2~/3 are shown in Figs. 2 and 3 respectively. The solution 
far-downstream of the leading edge is presented in Section 6. Although 
yi = ~/2 in these figures (the plate bisects one row of vortices), Yl 
can be assigned any value but can be restricted to the range 0<y,<2~ 
since its influence is periodic. As well as shifting the vortices in 
the y-direction, the parameter y~ also scales the amplitude of ~ ~'~ by 
the magnitude siny i . 

Note in Figs. 2 and 3 the large disturbance velocities near the 
leading edge as indicated by the closeness of the streamlines. Also 
note from the streamline distortion that the plate exerts an upstream 
influence in this elliptic problem. The major downstream influence of 
the leading edge is limited to approximately one vortex length. 
Thereafter, the flowfield adjusts slowly to a new pattern which 
convects downstream without further change. For the case shown in 
Fig. 2, note that some of the fluid in Row 2 of the vortices is 
absorbed by Rows 1 and 3 as the fluid convects past the leading edge. 
The result is that slender, slowly-rotating vortices form near the wall 
and convect downstream. A similar behavior is seen in Fig. 3. 

The array of rectangular vortices (3.1) can be decomposed into two 
oblique, plane-waves of vorticity 

~ . ( a )  _ / 

with the argument of each sh i f ted  by the phase angle Yl" 

(3.3) 

I0 
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=3~7/2, t=i/2, y, = ~/2, /J~:=i/lOir 

2 "-X 

Row 1 

Figure 2. Streamlines for an array of rectangular vortices propagating 
downstream past the leading edge and along a semi-infinite 
plate. 

II 
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ROW 1 

3 

~=2V/3, t=i/2, y,=TI/2,A~=I/IO~I 

~'-X 

Figure 3. Streamlines for an array of rectangular vortices propagating 
downstream past the leading edge and along a semi-infinite 
plate. As in Fig. 2, the plate bisects one row of vortices, 
although the y-wavenumber is different. 

12 
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3.2 PLANE-WAVES OF VORTICITY 

For this case, the phase angle Yl is eliminated in Eqn.(2.5) by 
setting yl =~/2. Then we seek a plane-wave streamfunction which 
satisfies the requirement 

(3.4) 

where x has been nondimensionalized against the half-wavelength in the 
x-direction. An oblique plane-wave of vorticity which satisfies the 
above requirement is 

where the y-wavenumber is arbitrary. Thus the streamfunction for an 
oblique plane-wave of vorticity convecting downstream past the leading 
edge and along a semi-infinite plate is 

The streamlines for the cases of a longitudinal plane wave (@=0) and an 
oblique plane wave inclined at 45 v (@--~) are shown respectively in 
Figs. 4 and 5. 

Again note the high velocities near the leading edge and note that 
a slender vortex forms about a half-wavelength upstream of the leading 
edge. Downstream there evolves a pattern of U-shaped streamlines. For 
the oblique-plane wave, the "stagnation-points" at the wall where the 
disturbances ~ are not exactly opposite each other. 

Just as it was shown in Eqn.(3.3) that an array of rectangular 
vortices can be decomposed into two oblique plane-waves of vorticity, 
it can be shown that an oblique-plane wave can be decomposed into two 
arrays of rectangular vortices. Eqn.(3.5) can be expanded, yielding 

" 77 (x- ,') 5,, F9, ",7 5t  (x-t')cosfy + co5 (3.7) 

where each term represents an array of rectangular vortices. The two 
arrays are shifted by one-fourth of an x-wavelength and one-fourth of a 
y-wavelength relative to one another. 

13 
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~=0, t=I/2, y~=)7/2,AF~=I/10>7 

Figure 4. Streamlines for a longitudinal plane-wave of vortici~y 
propagating downstream past the leading edge and along a 
semi-infinite plate. 

14 
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~=~, t=i/2, y. = ~7/2, zIF=l/lO// 

Figure 5. Streamlines for an oblique plane-wave of vorticity 
propagating downstream past the leading edge ana along a 
semi-infinite plate. 

]5 
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4. IRROTATIONAL, INCOMPRESSIBLE DISTURBANCES 

4.1 INTRODUCTION 

Previously, rotational freestream disturbances were considered in 
the forms of arrays of vortices and plane-waves of vorticity. Now we 
consider a class of irrotational fluctuations and their interactions 
with semi-infinite plates. Attention is restricted to fluctuations 
which satisfy Eqn.(2.5) with Yl =~/2, but which also satisfy Laplace's 
equation 

5zz ~ (a)= O (4.1) 

Temporarily these disturbances will be assumed to propagate at the 
freestream speed, but this restriction will be eliminated at the close 
of the following section. Irrotational disturbances which propagate in 
wind tunnels with wavy or porous walls have been considered in Ref. 4. 

4.2 "ONE-SIDED" IRROTATIONAL DISTURBANCE 

By inspection or via a sine transform of Laplace's equation 
subject to condition (2.5), an irrotational streamfunction which 
oscillates neutrally in the x-direction is 

with velocities 

(4.2) 
:a) / e =~ 5:>z =(x- ~) =~ 

and V (a) ~x(Q) = = e 7 'Y  ~'o.s ~, ( x - / )  ¢4.4~ 

(4.3) 

Either a negative or positive exponent is acceptable, denoting decay or 
growth of the amplitude in the y-direction. A positive sign is 
specified here. In an engineering device, the amplitude would be 
finite if the y-dimension were limited by channel walls or by the 
vorticity source of the fluctuations. Rather than studying such 
bounded flows with their additional geometrical parameters, the simpler 
unbounded case is considered here. 

Analogous to the case of plane-waves of vorticity, we set y,= 5/2 
in Eqn.(2.1c) and thus obtain the streamfunction for an irrotational 
disturbance propagating along a semi-infinite plate 

= _ # ,  , , ;  

The streamlines for this flowfield are plotted in Fig. 6. Note 
the apparent undisturbed region beneath the plate and far-downstream of 
the leading edge. In the quadrant x>0,y<0, only a pattern of standing 
waves exists; there are no traveling waves. In section 6, the 
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t=i/2 

Figure 6. Streamlines for a "one-sided" irrotational disturbance 
propagating past the leading edge and along a semi-infinite 
plate. Because of the large variation of the velocity in 
this figure, the interval between streamlines has been 
assigned the three values Hf~=I/10,D 1//7 and i0/~. 
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fluctuations are shown analytically to vanish far-downstream of the 
leading edge and below the plate. 

The time t has been nondimensionalized with respect to the 
characteristic time A/U m and the disturbances propagate at the 
freestream speed. If the disturbances propagate at a speed different 
from U~o, then the above solutions apply if the tzme is 
nondimensionalized against A/c, except for the stationary case ot c=0. 
The instantaneous streamline pattern would be identical, but the 
freestream disturbance would propagate at dimensional speed c rather 
than Um. As shown later, the phase speed affects the fluctuating 
pressure. 

This irrotational solution is valid for all ~ an~ all 
distances ~LQ_~, except that the amplitude cannot be so large that 
compressibilty effects are significant. In contrast, for rotational 
disturbances, the solution is valid only for amplitudes and distances 
downstream sufficiently small such that the cumulative effects of the 
nonlinear rearrangement of vorticity are negligible. Secondly, except 
for the unsteady viscous layer associated with the no-slip condition at 
the plate surface, the viscous terms for the irrotational disturbances 
are identically zero outside of those layers. This characteristic 
differs from the case of rotational disturbances which decay via 
viscous dissipation in the streamwise direction. 

The case of the plate perpendicular to the "wave front" of the 
freestream disturbance has been considered here. A skewing or oblique 
penetration is also possible. Also possible is the izmiting case of 
irrotational disturbances which oscillate neutrally in the y-direction 
but grow or decay exponentially in the x-direction. These interesting 
and practical cases will require further study. 

4.3 "TWO-SIDED" IRROTATIONAL DISTURBANCES YIELDING ONLY A 
VELOCITY ALONG THE X-AXIS 

NORMAL 

With careful tailoring of the amplitudes and phases, we shall now 
superimpose two of the basic disturbances of the "one-sided" form to 
yield irrotational disturbances which are unbounded both above and 
below the plate, and which have special properties along the x-axis. 

The superposition of two streamfunctions with one decaying in the 
positive y-direction and the other decaying in the negative y-direction 
yields 

- '  = - '  
7"/ Z 7 /  

The velocities are (4.7) 
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yea;= c4.8) 

Along t h e  x - a x i s ,  u (a)-- 0 and v(a~= c o s ~ ( x - t ) .  Hence,  an i r r o t a t i o n a l  
disturbance has been specified with purely normal or "upwash" 
velocities along the x-axis and no longitudinal fluctuations. In 
general at other y-values, both velocities are nonzero. 

The streamlines for this freestream disturbance interacting with a 
semi-infinite plate are shown in Fig. 7. 

4.4 "TWO-SIDED" IRROTATIONAL DISTURBANCES YIELDING ONLY AN OBLIQUE 
VELOCITY ALONG THE X-AXIS 

For an oblique disturbance, u is proportional to v(°~ An 
oblique plane-wave of vorticity was considered in Section 3.2 where the 
same constant of proportionality A=u(a~v ~°J applies over the entire 
flowfield of the the freestream disturbance, ~ In a more restricted 
sense, oblique disturbances arise in irrotational flows as well, except 
that the two velocities are proportional only along some line, say the 
x-axis: 

(al(x , = u 0,t) Av(a)(x,0,t) (4.9) 

Such an irrotational disturbance can be created by superimposing two 
irrotational waves, shifted relative to one another, and which decay in 
the opposite directions. The streamfunction and velocities are 

- I  
The coefficient (2~cos8) has been adjusted so that condition (2.5) is 
satisfied. When cose=r/2, Eqn.(2.5) is not required, since for that 
case, purely longitudinal disturbances arise along the x-axis. When 
the two disturbances are in phase, then 8=0 and u(a)=0, which is the 
case of a normal velocity fluctuation considered in Section 4.3. 

For a general angle 8, the proportionality constant is 

A = -tan8 (4.13) 

The disturbance streamfunction which satisfies 
plate is 

- -  = 

impermeability at the 

(4.14) 
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t=i/2 

X 

Figure 7. Streamlines of a "double-sided" irrotational flowfield with 
amplitudes and phasing so that the freestream disturbance 
has purely normal velocities along the x-axis upstream of 
the leading edge. This disturbance propagates past the 
leading edge and along a semi-infinite plate. 
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The streamlines for the case of 0=-~/4 are plotted in Figure 8. 
Upstream of the plate, a region of oblique streamlines exists. 
Far-downstream of the leading edge, the patterns on opposite sides of 
the plate are offset by the phase angle 20=~/2, and adjust to two 
independent patterns which subsequently propagate without further 
change in structure. 

4.5 "TWO-SIDED" IRROTATIONAL DISTURBANCE YIELDING ONLY A LONGI~JDINAL 
VELOCITY ALONG THE X-AXIS 

The examples of irrotational disturbances considered here will 
conclude with another limiting case: a disturbance field with purely 
longitudinal disturbances along the x-axis 

~c~ = ~ sin z,(x-~j 5,,hA, (~,) ;'7 (4.15) 

with velocities d (a)-- -- 5:~=(x-6J cosk (zzFJ (4.16) 

and V (a) = co5~(~-~) stn~(~9,) (4.17~ 
where u (°)= sin,(x-t) and v Ca)= 0 along the x-axis, but v (a) is generally 
nonzero at other y-values. Since impermeability is naturally satisfied 
by this freestream disturbance, then Eqn.(2.5) can neither be satisfied 
nor is it required. Th~ interaction between the plate and freestream 
disturbance is trivial,#~ 0, and the streamfunction is ~ = ~(a;with 
streamlines as plotted in Fig. 9. The streamlines associated with the 
freestream disturbance merely propagate along the plate without any 
distortion. 

While these examples of superposition yield special, limiting 
flows along the x-axis, the superposition of various irrotational 
disturbances with different amplitudes, phases and x-wavenumbers can 
yield an unlimited variety of fluctuations. Fourier analysis can be 
used in more general cases. 
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8=r/4, t=I/2 

Figure 8. Streamlines for a "double-sided" irrotational flowfield with 
oblique velocities along the x-axis far upstream ot the 
leading edge. This disturbance propagates past the leading 
edge and along a semi-infinite plate. 
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t=I/2 

Figure 9. Streamlines for a "douDle-sided" irrotational disturbance 
field with a purely longitudinal velocity along the x-axis. 
A plate aligned with the x-axis does not influence the 
flowfield. 
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5. ROW OF POTENTIAL VORTICES 

The previous examples of freestream disturbances have had only one 
x-wavenumber. As an example of a periodic disturbance with a discrete 
series of x-wavenumbers and with singularities in the flow, we will 
analyze the case of a row of potential vortices propagating downstream. 
If these vortices model little patches of "weak" vorticity convecting 
along in the flow, then they convect with the mean flow at speed c=U~. 
However, if they model a set of bound circulations such as airfoils 
translating along in the x-direction, then the phase speed c can be 
different from the freestream speed. Even negative (upstream) speeds 
are possible. As long as the proper speed is specified or incorporated 
into the nondimensionalization of time, then the mechanism of 
propagation is not of central importance here. 

Beginning with the complex potential W =~+iF for an infinite row 
of equi-distant vortices, each with strength K , and positioned at the 
coordinates (0,0), (±a,0), (±2a,0), ... 

- 

(5.1) 

as given by Lamb (Ref. 5, page 224), then the streamfunction is 

This streamfunction will be modified to describe a row of 
traveling, alternating vortices along the line y = Yz" Eqn.(5.2) can 
be modified by (a) accounting for the motion of the vortices by 
replacing x by x-t, (b) accounting for the alternating circulations by 
setting up two streamfunctions where the streamfunction with positive 
circulation is written down by replacing x-t by x-t+a/4 and the 
streamfunction for the vortices with negative circulation is written 
down by replacing x-t by x-t-a/4 and replacing K by -K, and 
(c) shifting the row to lie along Y=Yz by replacing y by Y-Yz" After 
some manipulation, the result is 

~6 (')= ~ ¢/~ { co'/z [2M(i/-YzJ/a] ÷ ''~[27r(x-~)/~ I 
[2zz(x.,,')/a (5.3) 

These vortices translate to the right at dimensional speed c; this 
speed does not directly appear because time has been nondimensionalized 
against a/2c. This streamfunction is periodic with period a. Its 
average vanishes. 

Nondimensionalizing y and Yz 
A = cosh[~(y-yz)] and defining X=2(x-t)/a, 
streamfunction behaves as 

against a/2, letting 
then for y fixed, the 
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(5.4) 

This function was fast Fourier transformed along the x-axis to yield 
the series representation 

= .17286s inTX-0 .10760  (10" 3 ) s in3~X+0.11920 (10 ~6) s in5TX+O(10 °8 ) 

for yz=l. For each term in this series, the streamfunction was scaled 
and an impermeability streamfunction included so that each Fourier mode 
satisfied impermeability. A streamline pattern associated with this 
freestream disturbance interacting with a semi-infinite plate is shown 
in Figure 10. 

In comparing Figs.6 and 10, note the similarity of the pattern for 
y<i/2. Beneath the singularities, there is a superposition of waves, 
and the largest x-wavelength is the period a of the row of vortices. 
The other wavelengths are smaller and decay exponentially away from the 
vortices more rapidly. The mode with the largest x-wavelength survives 
the furthest from the row of vortices. 

This case of a row of vortices is an example of a flowfield which 
is unbounded in extent (-m <y<~), but where a region exists (y<yz) 
where it is appropriate to introduce an exponentially growing 
freestream disturbance, exp(+~y), which is irrotational. 
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L_ _r 
{ period a { t=I/2 

y=l-- 

y=O -- x 

Figure i0. Streamlines for a row of potential vortices convectlng 
downstream past the leading edge and along a semi-infinlte 
plate. 
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6. THE FAR-DOWNSTREAM SOLUTIONS 

AS can be observed in Figures i-I0, at a distance of about 
one-half x-wavelength downstream of the leading edge, a (nearly) 
periodic flowfield has formed which propagates along at (almost) the 
same speed as the freestream disturbances without any further 
significant change in pattern. By letting x--~ in Eqn.(2.1c) or by 
direct solution of the mathematical system which neglects the leading 
edge 

[7~ ((')= 0 

~("~ ~¢") at y=0 for -~<x<+~ 

~¢r~s bounded as y--~ (6.1) 

as presented in Ref. i, the solution for ~c;) far downstream of the 
leading edge is 

_/ 
e f o r  (6 .2)  

where iYl denotes the absolute value of y. The streamlines for this 
irrotational flow are plotted in Fig.lla. Note that this lateral 
influence is dictated by the x-wavenumber (with dimensionless value~). 
Solution (6.2) is a traveling-wave version of the classical 
Kelvin-Helmholtz solution (Ref.5) for flow past a wavy wall. 

(,) 
Hence, if solution (6.2) is used for F rather than (2.1c), then 

the "far-downstream" solution is again of form 

_ _ -  o s  ( 6 . 3 )  

where the ~fa~or the various freestream disturbances are the same as 
given in earl ier sections. The streamlines for these far-downstream 
solutions, as shown earlier in Figures 2-10 with a leading edge, are 
plotted in Fig. llb-f and Fig. 12. By comparing the figures with the 
same freestream disturbance, note how rapidly the streamlines adjust 
downstream of the leading edge to qualitatively resemble the 
"far-downstream" patterns. Fig.llg is the pressure associated with the 
flow in Fig. llf; this pressure will be discussed in Section 7.3. 

The blockage of the flow by the semi-infinite plate, as can be 
clearly seen in Figure 6, can be easily demonstrated by the 
far-downstream solution for the "one-sided" irrotational disturbance 
considered in Section 4.2. The far-downstream solution is 

~'~/~"~(X-I~][ @~'~- e zFI~/I] as x-~and for --- <y<~ (b .4) 
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j 
I m p e r m e a b i l l t y  (b) ~=3n/2,y,=~/2 
f l o w  

D 
¢) p=n', y,=3~/4 

D 

(a d) ~=~, y,=~/2 

(o) ~ = 2 ~ / 3 , y , = n / 2  ( f )  P lane-wave  
p=o 

(g) I r r o t a t l o n a l  (h) P r e s s u r e  
f l o w  i s o b a z s  

for  (S) 

Figure II. Streamlines for various traveling-wave solutions downstream 
of the leading edge. There are no linear contributions to 
the fluctuating pressure far-downstream of the leading edge 
when the disturbances propagate at speed U~. However, if 
the irrotational flow of Fig.llg propagates at a speed c~U=, 
then the pressure field plotted in Fig.llh arises. 
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= 

Figure 12. Streamlines for an oblique plane-wave of vorticity 
far-downstream of the leading edge of a semi-infinite plate. 
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Consequently for y<0 below the plate, the two exponentials cancel and 
=0, i.e., the flow is blocked by the plate. Far above the plate, the 

second exponential vanishes and we are left with our original 
exponentially-growing freestream disturbance (4.2). 

These far-downstream solutions are the only ones which survive for 
large x. However, recent evidence has shown that thes_____e solutions are 

only traveling wave solution~ in the half-plane downstream of the 
leading edg 9 for the case of an inviscid uniform mean flow. The 
effects of the leading edge can be described in terms of a 
superposition of standing waves. Hence for all positive x, the 
disturbances consist of this far-downstream traveling wave solution and 
standing waves. Far-downstream of the leading edge, the standing waves 
vanish, and only the traveling wave survives. Study into this 
description of the disturbance field is continuing. 
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7. THE FLUCTUATING PRESSURE FIELD 

7.1 PRESSURE FIELD FOR ROTATIONAL DISTURBANCES 

The fluctuating pressure in a linear analysis of arrays of 
vortices and plane-waves of vorticity interacting with a semi-infinite 
plate is the same as for square vortlces 

= c7.1  

The pressure has been nondimensionalized against the product ~qU~. 
Dimensionally, this expression indicates that the pressure fluctuation 
is proportional to the rate at which the vortices are convected 
downstream and "collide" with the plate, U~, and the y-momentum (per 
unit volume) as the fluid decelerates and satisfies impermeability, 
~qsiny~. Along the plate, this pressure decays as x "'~ . The nonlinear 
terms have been neglected in the Bernoulli equation, consistent with 
the linear analysis. 

The contours of constant pressure are plotted in Fig. 13 as also 
given in Ref. 2. For reasons clarified in the next section, the 
pressure should be nondimensionalized against pqc, where c is the 
propagation speed of the disturbances. For weak rotational 
disturbances, c=U~. 

7.2 PRESSURE FIELD FOR IRROTATIONAL DISTURBANCES 

If the flow is irrotational, then the x and y momentum equations 
for the disturbances can be combined to yield the unsteady Bernoulli 
equation 

c (7.2) 

in dimensionless form where the characteristic time is A/c and the 
characteristic pressure is ~qc. Of course, if c=0, this characteristic 
pressure is not appropriate. 4~is the velocity potential related to 
the longitudinal velocity by u=-~/~x . The quadratic terms will be 
eliminated so that a meaningful comparison is possible with solution 
(7.1) for rotational fluctuations. 

Note that the order of the quadratic terms is q/c=(q/Um)(U~/c) 
which may be significant for low phase speeds, c<<U~, even though q/Um 
may be quite small. 

TO better identify the various contributions to the pressure~ we 
now represent the velocity as u=u(a)-u (i) and the potential as @= @~°i@ ~'~. 
The pressure is therefore 
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Figure 13. Isopressure contours for the pressure p, arising when 
rotational or irrotational freestream disturbances propagate 
downstream past the leading edge of a semi-infinite plate. 
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ra) ( ~  a '('Q)- ( ' L  U~ u (~') 
T- (7.3) 

which can be rewritten as 

P= ~(a)+ ~xCQ') ~;<'~ + -F -C.I 
" " ~ , ~ • (7.4) 

d d d 
Since the potential ~(a) of the "freestream" disturbances 

propagates at speed unity (corresponding to dimensional speed c), then 
~{a)=fct(x-t). Consequently, terms (pa) vanish. 

Terms (p,) are identical with the pressure field associated wltn 
rotational disturbances, except for the nondimensionalization agalnst 
pqc rather than ~qU~. The pressure isobars are those plotted in 
Fig. 13. 

Terms (pz) represent a contribution to the pressure when c#U~. If 
c=U~, then that contribution vanishes, and the pressure is the same for 
rotational and irrotational disturbances if nonlinear and viscous 
effects can be neglected. This term depends on both the details of the 
freestream disturbanc~ through the term u ta) as well as the 
impermeability flow u t~. 

Both contributions in Pz can be expressed analytically. The 
freestream disturbance u ta) has been given in Eqn.(4.3) for the 
one-sided disturbance, in Eqn.(4.7) for the disturbance with only an 
upwash velocity along the x-axis, in Eqn.(4.11) for the disturbance 
with an oblique velocity along the x-axis, and in Eqn.(4.16) for the 
disturbance with only a longitudinal velocity along the x-axis. 

The expression for u (iJ is given by Eqn.(2.2) with ~ =~/2, z.e., 

 rf_z )V z ) (7 .5)  

This expression is of universal form. 

Hence, the pressure is given in terms of two universal functions, 
Pl and u ('~, which depend on the freestream disturbance only through the 
magnitude and phase of the normal ~ ~  the x-axis, and one 
simple analytical expression u(a)(x,y,t) that is intimately llnked with 
the structure and variation of the longitudinal freestream disturbance. 

The second universal function due to the longitudinal velocity u (~') 
is plotted in Figure 14. 
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t = 1/4 

Figure 14. Pressure isobars for the contribution, u(r~ to the pressure 
Pz. This contribution is of universal form, and is 
significant when the disturbance does not propagate at the 
freestream speed, c~U~. 
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7.3 PRESSURE FAR-DOWNSTREAM OF THE LEADING EDGE 

Far downstream of the leading edge, Pl vanishes. The only linear 
contribution which remains is 

= - -- (7.6) 

where the analytical forms for u~°;have been cited previously, and ~I ~('') 
is given by Eqn.(6.2). To illustrate the behavior of this pressure, 
consider the one-sided irrotational disturbance 

ca~ _ ~ e- 5~ ~(x-e ) 
77 (7.7) 

which decays in the negative or positive y-direction depending on our 
choice of sign. Then 

~_ y c,,;_ pc~)= _~ ~/,zT,(x_e)[e+--~ e ] 
?F (7.8) 

and the longitudinal velocity is 

- = ] ( 7 . 9 )  

where ~ =+1 for  y~0+ and ~=-1 for  y~0-. Hence the dimensional pressure 
far-downstream of the leading edge is 

Pz~= ~(c-t'/~)$cn~z(x-d)[ te±~9'÷~e ] (7.10) 

No matter which sign is selected on the exponent, no pressure 
fluctuation appears on one side of the plate far-downstream of the 
leading ed_~_q. This can be expected since Fig. 6 suggests that there is 
no flow on one side of the plate far-downstream of the leading edge. 

On the other side of the plate, the pressure increases away from 
the plate in an unbounded manner. The pressure isobars are plotted in 
Fig. llh. 

In summary of this chapter, there are three linear contributions 
to the pressure which can be expressed dimensionally as 

= ~q(c-U) x,y,t) -U (x,y,t)] p*(x,y,t) pqcp I (x,y,t) + [u(°)( (i) 
4 4 

Eqn. (7.1) (4.3,4.7,4.11,4.14) (7.5) 
Figure 13 Figure 14 

(7 .Ii) 

The first and third terms are universal functions which depend only on 
the amplitude and phase of the normal velocity of the freestream 
disturbance along the x-axis, v(a)(x,0,t). The second term is not 
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universal in nature, and is proportional to the longitudinal velocity 
of the freestream disturbance. If the disturbances convect with the 
freestream speed, c=Um, then only the normal velocity along the flight 
path influences the pressure everywhere. If c~U~, much more 
information is required: the longitudinal velocity of the freestream 
disturbance u(=;(x,y,t) must be known everywhere that the pressure is 
needed, p(x,y,t). 
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8. SUMMARY, DISCUSSION AND CONCLUSIONS 

The solution for an array of square vortices convecting downstream 
with the freestream speed and interacting with a semi-infinite plate 
(Ref. i) has been modified for more general rotational disturbances 
(including rectangular vortices and plane waves of vorticity) and 
irrotational disturbances (which can propagate at speeds different from 
the freestream). The disturbance streamfunction which satisfies 
impermeability downstream of the leading edge is of the form 

where ~(a;is the streamfunction of the freestream disturbance and ~t~ 
is an irrotational distortion to that flow caused by the impermeability 
of the plate. The normal velocity, V (a) =~a~, of the freestream 
disturbance varies sinusoidally along the x-axls. If v (a;= 0 along the 
x-axis, then the plate does not affect the freestream disturbance, and 
~(')= 0. 

For rotational disturbances, the solution is limited to low 
intensities and short distances downstream because of the llnearization 
introduced. For irrotational, inviscid and unseparated disturbances, 
the solution is exact for all intensities and all distances downstream 
since superposition of irrotational flows is permissible for all 
amplitudes. 

Far downstream of the leading edge, the influence of the plate in 
the y direction consists of the irrotational flow which decays away 
from either side of the plate 

= o , , ' ) e -  for x>>l 

Since it is possible for irrotational freestream disturbances to also 
decay in the y-direction at this rate, then the plate can act to 
effectively block freestream disturbances on one side of the plate, 
except for the standing waves near the leading edge. Hence, what 
survives far-downstream of the leading edge depends on some additional 
information such as the nature of the freestream disturbance and where 
the vorticity lies which is inducing the flowfield, as well as the 
velocities along the flight path. 

For rotational disturbances, the fluctuating pressure is of 
dimensional form 

P'= u. + o(c z ) 

where q is the characteristic normal velocity fluctuation along the 
x-axis of the freestream disturbance. Pm is a dimensionless 
fluctuating pressure which is unbounded at the leading edge and 
vanishes far-away. This pressure is "universal" function which depends 
only on the x-wavelength and phasing of the normal velocity fluctuation 
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along the x-axis, v(x,0,t). The other details of the freestream 
disturbance elsewhere in the flow do not influence this pressure. 

For irrotational disturbances propagating at speed c, the pressure 
is of dimensional form 

p*(x,y,t)= ~qcpl (x,y,t) + ~q(c-U~) [uC=J(x,y,t) -u('~(x,y,t)] 

The function p, is the same universal function applicable fQK 
rotational or irrotational disturbances. The longitudinal velocity u c'J 
is also a universal function independent of the form of the freestream 
disturbance. Unfortunately, u(~(x,y,t) is the longitudinal velocity 
fluctuation in the absence of a plate, which must be known everywhere 
and at all time x,y,t that the pressure is needed. If c=U~, then this 
function does not influence the pressure, which reduces to the same as 
for rotational disturbances above. 

The freestream disturbances assumed here have been described as a 
single Fourier component, except for the case of the potential vortices 
where the velocity was represented as a series of waves to illustrate 
the use of superposition. General disturbances would require 
decomposition into the basic constituents, including the case of 
z-wavenumber zero as assumed here. For turbulence or other 3-D 
disturbances, the 3-D irrotational alteration to the freestream 
disturbance would be required to account for the 3-D flow about the 
leading edge. 

Numerical solutions of the unsteady, incompressible, viscous, 
linearized, 2-D equations with a developing boundary layer were 
obtained by Kachanov, et al.(Ref. 8). The disturbance was a vortex 
sheet convecting downstream at speed U~ on one side of the plate. This 
disturbance is related to the "one-sided" irrotational disturbance of 
Section 4.2. The present authors have analyzed the cases of a vortex 
sheet, "half-arrays" of rectangular vortices, and K~rm~n vortex streets 
interacting with semi-infinite plates. For brevity, however, these 
cases are not included in this report. 

Rockwell (Ref. 9) recently surveyed the literature related to 
vortical fluctuations impinging on leading edges and corners. For an 
oscillating shear layer impinging on a 90 degree corner, experimental 
data for the pressure fluctuation shows a rise in pressure along the 
plate as the corner is approached. The present authors believe that 
the pressure fluctuation associated with standing waves contributes to 
that pressure fluctuation, which also has the characteristics of a 
traveling wave. 

This elliptic analysis is an example where only a single Fourier 
component is specified far-upstream of the leading edge. However, 
because of a change in the boundary condition at the leading edge, a 
pattern of growing standing waves appears upstream of the leading edge 
which reflects the upstream influence of the plate. For x~0, 
downstream of the leading edge, a decaying standing wave pattern 
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appears, as well as the freestream disturbance modified by an 
irrotational traveling wave. Through superposition, all these 
solutions in their appropriate domains join smoothly along the y-axis. 
Hence, this analysis is an example of the "excitation" of various waves 
with amplitudes and phases which can be linked to the properties of the 
freestream disturbance. 

Elliptic problems of this nature are central to the problem of 
linking freestream disturbances with the various waves possible inside 
and above boundary layers, including the Tollmien-Schlichting wave and 
other instabilities, the continuous spectra of freestream vorticity 
fluctuations, and the standing waves. Accounting for the elliptic 
upstream influence for freestream disturbances as they interact with a 
plate is necessary for the later description of what happens in the 
boundary layer. The procedures, results, and interpretations from the 
present analyses add to the description of the processes leading to 
boundary layer transition. The similarities and differences between 
the various freestream disturbances in their Fourier descriptions helps 
identify basic classes of problems and eliminate redundancy in future 
studies. The pressure gradient and longitudinal velocity fluctuation 
from this analysis appear in analyses of unsteady boundary layers as 
the forcing function in the boundary layer equation and the outer 
boundary condition on the velocity. 
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English 

a/2 

A 

C 

cosh,sinh 

C(z) 

Cz(z) 

f 

F(z,t) 

g 

i 

in 

P 

Po 'P, 'Pz 

q 

S(z) 

S= (z) 

t 

UrV 

u® 

W 

X 

X 

NOMENCLATURE 
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separation distance between between neighboring 
potential vortices with opposite senses of rotation 

constant of proportionality in Eqn.(4.9); 
the quantity cosh[~(y-yz)] for y fixed in Eqn.(5.4) 

phase speed 

hyperbolic cosine, hyperbolic sine 

Cosine Fresnel integral, C(z) = I%os (~tz/2) dt=C z (~zzZ/2) 
o 

I - I  z 
Cosine Fresnel integral (2) , C~(z) =.7_olz~t ~ cos (t) dt 

function related to the Fresnel integrals by 

I i C(z) ] sin (~rzZ/2) f(z) : - S(z)]cos(;/zZ/2)-[~- 

function defined in Eqn. (2.4a) 

function related to the Fresnel integrals by 

g(z) = [~- C(z)]cos(~rzZ/2)+[~- S(z)]sin(;~zZ/2) 

C_l)'/z 
logarithm to base e 

disturbance pressure 

contributions to the pressure fluctuation 
as defined by Eqn. (7.4) 

characteristic disturbance velocity 

z Sine Fresnel integral, S(z) = ~ sin(/It /2) dt 
"O ,~-Jz 

Sine Fresnel integral(2) , Sz(Zl--(-2~r/z 1: " s in ( t )d t  
time 

disturbance velocities in the x and y directions 

mean x-velocity in the freestream 

+i~, complex potential 

coordinate parallel to plate and in streamwise direction 

the quantity 2(x-t)/a in Eqn.(5.4) 
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Y 

Yl 

YZ 

Z 

coordinate normal to the plate 

phase angle controlling the shifting of vortex arrays 
in the y-direction 

the row of potential vortlces lie along the llne Y=Yz 

x+iy 

Greek and Script 

P 
& 

v z 

y-wavenumber 

the constant with value +i for y~0+ and -i for y~0- 

Laplacian operator 

28 relative phase shift between the two irrotational 
freestream disturbances 

K circulation of a potential vortex 

A half-wavelength; width of a rectangular vortex 

t 

CaJ 

mass density of the fluid 

velocity potential related to velocities by u~ =-~/~x~ 

disturbance streamfunction = ~ ~e~hich satisfies 
impermeability along the semi-infinite plate and reduces 
to the freestream disturbance far-upstream from the plate. 

disturbance streamfunction in the absence of the ~ ,  
i.e. the "freestream disturbance" 

the streamfunction for an irrotational flow which, when 
subtracted from the "freestream disturbance", ~b, causes 
the impermeability condition to be satisfied for x>0, y=0 

Superscripts, Subscripts, and Miscellaneous Notation 

a 

lyl 

i 

( ) 

in the ~bsence of the plate 

absolute value of y 

dimensional 

associated with the irrotational flow, ~('~ 

time average over one time period 

real part of [ ] 
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